

Available at www.sciencedirect.com

Metabolism

www.metabolismjournal.com

Review

Postprandial lipoprotein metabolism in familial hypercholesterolemia: thinking outside the box

Dick C. Chan, Gerald F. Watts*

Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia

ARTICLEINFO

Article history: Received 8 June 2011 Accepted 26 July 2011

ABSTRACT

Familial hypercholesterolemia (FH) is a dominantly inherited disorder principally due to mutations in the low-density lipoprotein (LDL) receptor that classically cause markedly elevated plasma LDL cholesterol concentrations and premature coronary heart disease (CHD). However, elevated plasma LDL cholesterol alone does not fully account for the increase or variation in risk of CHD. We propose a hypothetical model for the role of postprandial dyslipoproteinemia based on the overproduction and decreased catabolism of triglyceride-rich lipoproteins, which may be a consequence of LDL receptor deficiency. Expression of postprandial dyslipoproteinemia in FH may also depend on the type of pathogenic gene variants and on coexistent conditions, particularly obesity and insulin resistance. Further research is required to investigate our model proposed and to test whether treating postprandial dyslipoproteinemia decreases CHD risk in FH incremental to standard therapy.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Familial hypercholesterolemia (FH) is the commonest monogenic cause of hypercholesterolemia and premature coronary heart disease (CHD) [1-3]. Heterozygous FH occurs in the general population at a frequency of at least 1 in 500. The classic metabolic defect in FH is hypocatabolism of low-density lipoprotein (LDL) due to decreased LDL receptor activity [4,5]. Familial hypercholesterolemia markedly increases the risk of premature CHD, to the extent that approximately 50% of untreated men and 20% of female patients have fatal or nonfatal CHD events by the age of 50 years [6]. However, there is wide variation in the incidence of CHD among FH patients, even among family members with similar LDL receptor mutations and plasma LDL cholesterol concentrations. Hence, the classic mutational defect in FH, markedly elevated

plasma LDL cholesterol, alone does not fully account for this variation in CHD or mortality [7-13]. Although some of this residual risk may be due to other coexistent cardiovascular risk factors, including diabetes, hypertension, smoking, and marked elevation in plasma triglyceride and lipoprotein (a) concentrations [11-13], it is possible that postprandial dyslipidemia may play a major contributory role [14]. Postprandial disturbance in lipoprotein metabolism has received little attention, however, as a specific metabolic defect and atherogenic risk factor in the context of FH.

2. Normal postprandial lipoprotein metabolism

After ingesting a fat meal, dietary cholesterol and triglycerides are packaged together with apolipoprotein (apo B-48) into

Authors' contribution: DCC and GW contributed to the writing of the first and successive drafts of the manuscript.

^{*} Corresponding author. School of Medicine and Pharmacology, Medical Research Foundation, Royal Perth Hospital, GPO Box X2213, Perth Western Australia 6847, Australia. Tel.: +61 8 9224 0245; fax: +61 8 9224 0246.

E-mail address: gerald.watts@uwa.edu.au (G.F. Watts).

large chylomicron (CM) particles by the enterocyte. These lipoproteins are responsible for the transport of exogenous lipids from the intestine via the circulation to peripheral tissues, the so-called exogenous pathway of lipoprotein metabolism. Following lipolysis by lipoprotein lipase (LPL), CM remnant particles are produced; and these are in turn cleared by the liver via at least 5 liver surface cell receptors: the LDL receptor protein, the liver cell remnant receptor, the asialoglycoprotein receptor, the lipolysis stimulated receptor, and the classic LDL (or B/E) receptor [15]. The interaction of CM remnants with hepatic receptors is also dependent on the apoprotein ligand apo E.

Postprandial lipidemia is a normal physiological event that reflects chiefly the aforementioned metabolic pathway. The postprandial alterations in triglyceride and lipoprotein metabolism are transitory and usually last from 6 to 8 hours after ingesting a fatty meal [15]. Hypertriglyceridemia reflects the accumulation of triglyceride-rich lipoproteins (TRLs), CM, very low-density lipoprotein (VLDL), and their remnants.

3. Postprandial dyslipoproteinemia

Pathological postprandial dyslipidemia or more precisely dyslipoproteinemia, refers to an increase in the magnitude and duration of TRLs response after a fatty meal [15]. These changes are loosely and globally reflected by the response of plasma triglyceride concentration to a meal. Postprandial dyslipoproteinemia may occur as a consequence of decreased receptor activity or a defect in the ligand for these receptors, and impaired lipolysis by LPL. Moreover, oversecretion of VLDL that competes with CM remnants for clearance can exacerbate the postprandial response. As discussed later, these metabolic defects can occur in FH. Postprandial accumulation of TRLs in plasma also enhances exchange their triglycerides for cholesterol esters from LDL and highdensity lipoprotein (HDL) [16,17]. Under the action of lipolytic enzymes, triglyceride-enriched LDL and HDL particles become smaller, denser, and more atherogenic. Hence, the atherothrombotic effects of TRL imply that the postprandial state is highly significant for patients with FH.

4. TRLs and atherothrombosis

Epidemiological data suggest that fasting and postprandial hypertriglyceridemia is a risk factor for CHD [18,19]. A recent report from collaborative analysis of 101 studies supports a causal role for triglyceride-mediated pathways in CHD [20]. That notion is consistent with several clinical case-control studies showing enhanced accumulation of TRLs in plasma following a fat challenge in patients with coronary disease compared with those without coronary disease [21,22]. Longitudinal studies also indicate that progression of coronary atherosclerosis is independently related to TRLs [23,24]. Disturbances in postprandial dyslipoproteinemia have been observed in individuals with visceral obesity, type 2 diabetes mellitus, and metabolic syndrome [25-27]. These abnormalities may partly account for increased CVD risk in these

subjects. The atherogenicity of TRLs relates to the smallersized remnant particles that accumulate in plasma following lipolysis of CMs and VLDLs [28-30]. Apolipoprotein C-III, an inhibitor of LPL, regulates this process and plays a crucial role on the pathogenesis of hypertriglyceridemia and atherosclerosis [31]. Triglyceride-rich lipoprotein remnants readily infiltrate the subendothelial space of the arterial wall where they are trapped by connective tissue matrix. These particles are enriched in cholesterol and apo E and are rapidly phagocytosed by arterial wall macrophages, which are then transformed into "foam cells," the hallmark lesion of atherosclerosis [32]. Triglyceride-rich lipoprotein remnants further contribute to atherosclerosis by impairing endothelial function [33], as well as by activating monocytes and inflammatory signaling pathways [34]. Triglyceride-rich lipoprotein remnants also have a direct effect on thrombogenicity by stimulating the cellular release of tissue factor and the generation of thrombin, as well as by potentially inhibiting fibrinolysis [35,36]. Given their role in experimental atherothrombosis, TRL remnants have been shown to be directly related to the extent in progression of coronary and carotid artery disease [37,38]. Hence, TRLs are likely to exaggerate the atherogenic effect of LDL particles in patients with FH.

The association between the molecular defect in FH and fasting plasma triglyceride concentrations has been previously examined [39-49]. Souverein et al [39] found that elevated fasting plasma triglyceride concentration was not significantly associated with increased CVD risk in FH (hazard ratio, 1.03-1.14). However, the lack of significant association could be due to the confounding effect of other factors such as diabetes and/or low HDL cholesterol in the statistical models. Bertolini et al [40] found a small but nonsignificant increase in plasma triglyceride concentration in FH patients with CHD compared with those without CHD, but the definition of CAD in this study was not rigorous. Several studies have shown no significant impact of LDL receptor (such as null LDLR alleles vs defective alleles) or apo B-100 mutational class on fasting plasma triglyceride concentration [41-45]. However, these studies did not specifically examine the effect of individual molecular defect in FH on fasting plasma triglyceride concentrations. As we will discuss later, mutations in the binding domain of the LDL receptor (such as the exon 4 of the LDLR gene) could have a significant impact on TRL metabolism. Patients with FH with tendon xanthomas (which are associated with increased risk of premature CHD) have been found to have a trend to a significant increase in fasting plasma triglyceride concentration compared with those without tendon xanthomas [46,47], consistent with a meta-analysis of 22 studies [48]. It is important to note that none of these studies were carried out in the postprandial state. Whether this small increase in fasting plasma triglyceride levels in FH patients reflects a significant alteration in postprandial TRL metabolism remains unclear and merits further investigation. Importantly, a study by Kolovou et al [49] found that heterozygous FH patients had impaired triglyceride response to a fatty meal compared with non-FH controls with similar fasting plasma triglyceride concentrations. This observation implies that fasting plasma triglyceride alone may not be a sufficiently sensitive predictor of postprandial dyslipoproteinemia in FH.

5. Assessment of postprandial TRL metabolism

Although fasting measurements of TRLs (such as plasma triglyceride and apo B-48 concentrations) are predictive of postprandial dyslipoproteinemia, they do not reflect the full details or mechanisms of the metabolic changes in lipid and lipoprotein metabolism in the postprandial state. Standard methods for assessing TRL metabolism involve measurement of the response of plasma triglycerides, retinyl esters, remnant-like particle (RLP), or apo B-48 to an oral fat load following an overnight fast [50]. In practice, a creamy emulsion consisting of 35% to 40% fat (weight/volume) with a polysaturated to saturated fatty acid ratios of 0.05 to 0.06 is taken orally after an overnight fast; the total fat content of the emulsion is determined by body surface area (30-40 g/m²). After the ingestion of the oral fat challenge, blood samples are taken every 1 or 2 hours over 10 to 12 hours. Postprandial responses are commonly analyzed as the area under the curve (AUC) following the oral fat challenge. Although measurement of plasma triglyceride is the most simple and reliable measure of postprandial dyslipoproteinemia, it does not quantitate the number of TRL particles or differentiate between apo B-48containing and apo B-100-containing lipoproteins. An immunoseparation method to analyze RLP has been developed as a simple test for remnants, but does not distinguish between apo B-100-containing and apo B-48-containing lipoproteins. Retinol labeling is a conventional test for investigating postprandial dyslipoproteinemia. However, the postprandial response to a fat load is different from that of plasma triglyceride and RLP [51]. Accordingly, the retinyl palmitate levels may not be a suitable for evaluating postprandial dyslipoproteinemia. Apolipoprotein B-48 is an exclusive marker of the number of circulating particles of CM and their remnants [52]. Hence, apo B-48 is the most appropriate one to use to detect the presence of postprandial chylomicronemia. The kinetics of TRL metabolism may be further assessed using stable isotope labeling techniques. A 13C breath test based on the injection of a remnant-like emulsion labeled with cholesteryl ¹³C-oleate and subsequent measurement of ¹³CO₂ enrichment in breath has been described as a functional test for CM remnant metabolism in postabsorptive state [53].

6. Studies of TRL metabolism in FH

6.1. Experimental studies

Choi et al [54] found that an antibody raised against the LDL receptor delayed the clearance of ¹²⁵I-CM remnants from plasma by 30%. Ishibashi et al [55] reported that the AUC of plasma retinyl ester in the LDL receptor-deficient mice following a fat tolerance test was 4 times larger than that in wild-type mice. Martins and Redgrave [56]l showed that the clearance of CM remnants, as measured by the remnant-like emulsion breath test, was delayed in homozygous LDL receptor-deficient mice, consistent with a study in heterozygote and homozygote Watanabe heritable hyperlipidemic rabbits [57]. Using pulse-chase experiments and compart-

mental modeling in wild-type and LDL receptor–negative hepatocytes, Twisk et al [58] found that the absence of LDL receptor was associated with almost 2-fold higher apo B-100 and apo B-48 secretion rates compared with the wild-type cells. Taken together, these experimental studies demonstrate that a deficiency in the LDL receptor is associated with decreased catabolism and/or overproduction of TRLs.

6.2. Human studies

Table 1 summarizes human studies of TRL metabolism in patients with FH. Twelve studies have been reported: 6 in the postprandial (2 under constant feeding condition) and 6 in the postabsorptive states.

Rubinsztein et al [59] used retinol labeling and found that the postprandial response to an oral fat challenge was not impaired in homozygous FH compared with normolipidemic controls. However, other reports showed elevated postprandial retinyl palmitate response in homozygous and heterozygous FH [60-62]. Using a primed, constant infusion of d3-leucine, Tremblay et al [63] found that apo B-48 secretion was almost 2-fold higher in heterozygous FH patients compared with normolipidemic controls, with no difference in fractional catabolic rate (FCR), consistent with experimental data [58].

Twickler et al [62] observed higher fasting RLP cholesterol and an increased postprandial RLP cholesterol response to a fat load in 7 heterozygous FH patients. This observation was consistent with 2 other reports demonstrating that fasting RLP cholesterol was elevated in heterozygous FH patients [64,65]. We and others have demonstrated that patients with heterozygous FH had elevated fasting apo B-48 concentrations [63,64]. There are only limited data on the study of postprandial apo B-48 response to a fat load in FH. Using a stable isotope breath test, we reported that, in the postabsorptive state, the FCR of CM remnants from plasma was not impaired in patients with homozygous or heterozygous FH [53]. We may infer 2 possibilities from these observations. First, CM remnants can be efficiently removed by other hepatic receptors that are genetically distinct from the LDL receptor, such as an apo E recognizing receptor and the liver cell remnant receptor [66]. Second, accumulation of TRL only occurs in FH after saturation of hepatic clearance pathway in the postprandial state.

Using stable isotope labeling, Schaefer et al [67] carried out a postprandial study and found that low levels of HDL cholesterol and apo A-I in a patient with homozygous FH were due to the combined metabolic defects of increased apo A-I catabolism and decreased apo A-I production. The findings were consistent with a study in Watanabe heritable hyperlipidemic rabbits [68]. The hypercatabolism of apo A-I may be related to increased apo E content in HDL particles that in turn enhances the removal of apo A-I from plasma [69]. However, the mechanism by which the lack of functional LDL receptor relates to overproduction of apo A-I is unclear and requires further study.

A number of in vitro studies have also suggested that the LDL receptor may play a role in the regulation of the hepatic production of apo B-100–containing lipoproteins. Using a primed, constant infusion of ¹³C-leucine, Cummings et al

Table 1 – Studies of TRL metabolism in FH								
First authors	Clinical phenotype	No. of subjects	Principal marker	Findings	BMI	TG (mmol/L)	TC (mmol/L)	LDL-C (mmol/L)
Postprandial studies								
Rubinsztein et al	Homozygous ^a	5	TG, RP	Normal TG and RP AUC	N/A	N/A	N/A	N/A
Mamo et al	Homozygous ^a	6	RP, apo B-48	↑ RP and apo B-48 AUC	N/A	0.8 ± 0.3	8.5 ± 2.6	N/A
Cabezas et al	Heterozygous b	5	RP	↑ RP AUC in remnant fraction	27 ± 4	1.8 ± 0.6	9.7 ± 1.8	8.1 ± 1.4
Twickler et al	Heterozygous b	7	RLP-C	↑ RLP-C fasting and AUC	26 ± 2	1.4 ± 0.4	12.1 ± 1.9	10.3 ± 1.6
Tremblay et al	Heterozygous ^a	6	Apo B-48 kinetics	↑ Apo B-48 PR	22 ± 4	1.4 ± 0.2	9.5 ± 1.9	7.9 ± 1.7
Tremblay et al	Heterozygous ^a	6	Apo B-100 kinetics	↑ VLDL apo B-100 PR	22 ± 4	1.4 ± 0.2	9.5 ± 1.9	7.9 ± 1.7
Postabsorptive studies								
Dane-Stewart et al	Heterozygous b	15	Apo B-48, RLP-C	↑ Apo B-48 and RLP-C	27 ± 4	1.5 ± 1.8	9.9 ± 1.6	7.7 ± 1.5
de Sauvage Nolting et al	Heterozygous ^c	327	RLP-C	↑ RLP-C	26 ± 4	18 (1.2-2.4)	10.6 ± 2.7	8.4 ± 2.1
Watts et al	Homozygous b	10	¹³ C-breath test	Normal CM remnant FCR	23 ± 6	1.5 ± 1.5	14.8 ± 3.0	13.5 ± 3.0
Watts et al	Heterozygous ^b	15	¹³ C-breath test	Normal CM remnant FCR	27 ± 4	1.5 ± 1.8	9.9 ± 1.6	7.7 ± 1.5
Cummings et al	Heterozygous b	6	Apo B-100 kinetic	↑ VLDL apo B-100 PR	24 ± 3	1.5 ± 0.5	10.3 ± 1.5	8.5 ± 1.2
Millar et al	Homozygous ^a	7	Apo B-100 kinetic	↑ VLDL apo B-100 PR	23 ± 13	1.3 ± 0.8	13.2 ± 2.6	12.0 ± 2.4

BMI indicates body mass index; TG, triglycerides; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; RP, retinyl palmitate; RLP-C: remnant-like particle cholesterol; PR, production rate.

[70] found that VLDL-apo B-100 secretion was almost 2-fold higher in heterozygous FH patients compared with normolipidemic controls. The findings were also consistent with an earlier report indicating that heterozygous FH subjects who carry a null LDL receptor gene mutation have elevated plasma concentrations of LDL partly because of increased production of apo B-100 [71]. The increased VLDL-apo B-100 secretion rate is more pronounced in FH homozygotes [72]. Two mechanisms could explain the increased hepatic secretion of apo B-100 in homozygous FH in this study. The first relates to a direct role of the LDL receptor in promoting presecretory degradation of apo B-100, which may in turn downregulate the intracellular processing of apo B-100 in the liver. The second relates to the effect of increased non-receptor-mediated uptake of cholesterol by the liver on apo B-100 secretion. It is also likely that increased competition for hepatic receptors between VLDL and CM remnants in the postprandial state could delay the uptake of VLDL and/or CM remnants by this pathway and exacerbate postprandial dyslipoproteinemia.

The increased hepatic secretion of apo B-100 could potentially influence HDL metabolism in FH. Frenais et al [73] carried out a kinetic study of HDL apo A-I kinetics in 7 patients with heterozygous FH. Although plasma apo A-I concentration was not significantly different from normolipidemic controls, both HDL-apo A-I catabolism and production were increased in the FH subjects. The findings were consistent with a study in a patient with homozygous familial defective apo B-100 (FDB) [74]. The disturbance of HDL metabolism in FH can exacerbate the impact of postprandial dyslipoproteinemia on other cardiovascular risk factors, such as procoagulopathy, oxidative stress, inflammation, and vascular dysfunction. The interrelationship between the exogenous and endogenous pathways of lipoprotein metabolism requires further investigation in FH.

Collectively, the evidence from experimental and human studies supports the notion that deficiency in LDL receptor function in FH may disturb TRL metabolism. The human studies have several limitations, however, including small sample size and differences in subject characteristics and protocols for assessing postprandial dyslipoproteinemia. For example, the confounding effects of obesity and type of mutations were not adequately addressed.

7. Gene variants and postprandial lipoprotein metabolism in FH

Familial hypercholesterolemia is mainly due to mutations in LDLR, APOB, and proprotein convertase subtilisin-kexin type 9 (PCSK9) genes [5]. Of these mutations, about 95% are in LDLR, 3% in APOB, and 2% in PCSK9. These mutations could have differential effects on lipoprotein metabolism in FH.

7.1. LDLR

The LDL receptor gene, located on chromosome 19, consists of a number of distinct functional domains (signal sequence, ligand binding, epidermal growth factor precursor homology, oligosaccharide, membrane spanning, and cytoplasmic domains) [75]. There are more than 1600 mutations in the LDLR gene that can cause FH [76], accounting for up to 95% of all cases (see also www.ucl.ac.uk/FH). Patients with FH with mutations in the ligand binding domain have higher plasma LDL cholesterol concentrations than patients with mutations in other LDLR domains [77]. These mutations could potentially impair TRL remnant catabolism, contributing to postprandial dyslipoproteinemia. It is well recognized that the exon 4 of the LDLR gene coding for repeat 5 of the binding domain of the LDL

^a Genetically defined FH.

^b Phenotypically defined FH.

^c Genetically or phenotypically defined FH.

receptor is critical for apo E-mediated removal of TRL remnants [78]. Accordingly, FH patients with this mutation have higher plasma triglyceride levels than patients with other LDLR mutations [79], possibly indicating an increased postprandial dyslipidemia in these patients.

7.2. APOB

Mutations in the APOB gene on chromosome 2 result in FDB and lead to defective binding of LDL to the LDL receptor [80]. Unlike FH due to the LDL receptor defect, subjects with FDB have normal clearance of the LDL precursors [81]. This is because triglyceride-rich particles can bind normally to the LDL receptor via apo E as a major ligand for the receptor. Patients with FDB tend to have plasma triglyceride concentration intermediate between that of control subjects and FH heterozygotes [81]. Kinetic data also demonstrate that, in the postabsorptive state, VLDL—apo B-100 secretion and FCR are not significantly different between FDB patients and controls [81]. These observations suggest that TRL metabolism may not be markedly disturbed in these subjects. However, the effect of mutations in the APOB gene on postprandial TRL metabolism has not yet been investigated in FDB patients.

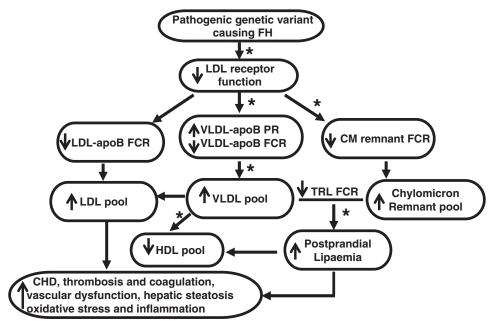
7.3. PCSK9

The PCSK9 gene, located on chromosome 1, is an important regulator of the LDL receptor and hence of LDL metabolism [82]. PCSK9 is a secreted protease produced mostly by the liver. In vitro and animal studies demonstrated that circulating PCSK9 binds to the LDL receptor and subsequently targets it for lysosomal degradation. Given the role of PCSK9 in the regulation of LDL removal by the liver, gain-of-function mutations in the PCSK9 gene (such as p.D374Y) have been linked to more severe hypercholesterolemia than LDLR mutations [83]. Given the role of PCSK9 in the regulation of LDL receptor, it is conceivable that PCSK9 could also play an important role in postprandial TRL metabolism. Mice deficient in PCSK9 (PCSK9^{-/-}) are protected against postprandial hypertriglyceridemia, probably via the inhibition of TRL secretion and/or the upregulation of remnant uptake [84]. Consistent with this, Naoumova et al [85] reported that PCSK9 patients with the D374Y mutations have elevated fasting plasma triglyceride concentrations when compared with patients with LDLR mutation. The effect of PCSK9 mutations on postprandial TRL metabolism warrants further investigation in FH.

7.4. ARH

A rare autosomal recessive form of hypercholesterolemia (ARH) caused by mutations in a putative LDL receptor adaptor protein located on chromosome 1 has been described [5,86,87]. Patients with ARH have a clinical phenotype similar to homozygous FH, but the condition is less atherogenic and more responsive to cholesterol-lowering therapy [88]. In ARH, there is a defect in adaptor protein that is required for clathrinmediated internalization of the LDL receptor by liver cells [5]. This defect appears to be specific for LDL uptake, but whether it is important on clearance of TRL remnants is unknown.

7.5. LPL, APOE, APOCIII, and APOAV


Gene variants in proteins involved in TRL metabolism may also govern postprandial dyslipoproteinemia in FH. Wittekoek et al [89] reported that FH patients with the LPL N291S mutations have elevated fasting plasma triglyceride concentrations compared with FH patients without the mutation. Hopkins et al [90] reported that FH patients with an APOE2 allele had elevated plasma triglyceride concentration compared with FH patients without the APOE2 allele (ie, APOE3/E3, APOE4/E3, and APOE4/E4). This observations was consistent with 2 other reports demonstrating that plasma triglyceride concentration was elevated in FH patients carrying 1 or 2 APOE2 alleles [40,91]. However, the effects of these genetic mutations on postprandial TRL metabolism have not yet been demonstrated in FH. Gene variants in other apolipoproteins, such as apo C-III and apo A-V, have also been shown to play a central role in regulating the metabolism of TRLs [31,92]. Bertolini et al [40] found that FH patients carrying the -1131C allele of apo A-V had higher plasma triglyceride concentration compared with FH patients with the -1131TT genotype. The genetic effect of these apolipoproteins on postprandial TRL in FH warrants further investigation.

8. Obesity, insulin resistance, and other factors beyond FH

Triglyceride-rich lipoprotein metabolism is well recognized to be disturbed by obesity and insulin resistance (IR) [17]. The prevalences of obesity and type 2 diabetes mellitus in FH are about 30% and 6%, respectively [13]. Increased adiposity markedly increases the flux of free fatty acids to the liver. This not only stimulates hepatic gluconeogenesis and triglyceride synthesis, but also impairs hepatic extraction of insulin. Insulin resistance may further increase both de novo hepatic lipogenesis and postprandial delivery of fatty acids and triglyceride to the liver, and subsequently the accumulation of liver fat and the secretion of VLDL. Hepatic IR may also impair LDL receptor expression and activity and hence the catabolism of LDL-apo B-100. Postprandially, IR is also recognized to stimulate the intestinal secretion of CM particles [93]. Hence, obesity and IR can contribute to the accumulation of TRL in FH. Constitutional, environmental, and hormonal factors, such as increasing age, male sex, highsaturated fat diet, high alcohol intake, hypothyroidism, and menopause, may also disturb TRL metabolism and exacerbate postprandial dyslipoproteinemia in FH [94].

9. Hypothetical model integrating lipoprotein metabolism in FH

From the evidence reviewed, we propose a hypothetical model integrating the exogenous and endogenous pathways of lipoprotein metabolism in FH that could explain why this condition may be associated with postprandial dyslipoproteinemia (Fig. 1). In addition to reducing the catabolism of LDL-apo B-100, LDL receptor dysfunction in FH also increases the secretion of VLDLs. Although previous studies suggest that the

^{*} Points at which insulin resistance, obesity and other gene variants may impact on metabolic pathway

Fig. 1 - Hypothetical model integrating endogenous and exogenous lipoprotein metabolism in FH.

catabolism of VLDL-apo B-100 in FH is not different from controls, we consider that, in the postprandial state, the defects in TRL secretion in FH are likely to be further exacerbated by decreasing hepatic removals of TRLs due to increased competition between VLDL and CM remnants. Accumulation of VLDL and CM particles in plasma may enhance the formation of small, dense LDL and HDL particles that in turn can aggravate endothelial dysfunction, thrombosis, and coagulation and hence increase the risk of CHD. These pathways are considered to be disturbed by the gene defect responsible for FH and by the type of mutation in these genes. The metabolic defects shown in Fig. 1 are also to be compounded by coexistent conditions, especially obesity and type 2 diabetes mellitus. We concede that the molecular defect in FH may per se only have a small incremental effect on TRLs. However, in the presence of other factors (such as obesity and type 2 diabetes mellitus) that increase the secretion of apo B-48 and apo B-100, this molecular defect could have a major impact on postprandial lipid and lipoprotein metabolism. Hence, in our model, FH may be viewed as a necessary, but insufficient, causal factor for postprandial dyslipoproteinemia.

More research is required to fully explore our model for postprandial dyslipoproteinemia in FH. We propose further studies using larger sample sizes, mixed meals, and well-validated methods for investigating postprandial lipid and lipoprotein metabolism. A kinetic analysis of postprandial TRL metabolism using stable isotope and compartmental modeling may provide critical information on the secretion, interconversion, and catabolism of TRLs in the postprandial state. Future studies should address the impact of different genetic mutations and the effect of IR, obesity, and diabetes on postprandial TRL metabolism. The effect of postprandial

dyslipoproteinemia on cardiovascular end points, such as endothelial dysfunction, also merits investigation.

10. Conclusion

We have proposed a model that integrates endogenous and exogenous lipoprotein metabolism in FH and could explain the occurrence of postprandial dyslipoproteinemia in this condition. The model, which is supported by experimental and clinical studies, may account for some of the variation in CHD risk in FH and requires to be rigorously tested.

However, postprandial dyslipoproteinemia is not a focus of standard therapy in FH at present. From a clinical perspective, treatment with statins (with or without intestinal cholesterol absorption inhibitor) is the primary treatment strategy to achieve LDL cholesterol lowering by at least 50%. Statins also contribute to modest reductions in plasma triglyceride and TRL concentrations in direct proportion to LDL cholesterol lowering [95], but are not as effective as other triglyceride-lowering agents, such as fibrate or niacin. For those FH patients on a statin with residual hypertriglyceridemia (>2.0 mmol/L fasting triglycerides), treatment should follow recently published guidelines [19,96]. This involves correcting secondary causes for hypertriglyceridemia, intensifying lifestyle modification, and probably additional therapy with fibrates, niacins, or n-3 fatty acid ethyl esters.

Acknowledgment

DCC is a National Health and Medical Research Council Career Development Fellow.

Conflict of Interest

None declared.

REFERENCES

- [1] Neil HAW, Seagroatt V, Betteridge DJ, Cooper MP, Durrington PN, Miller JP, et al. Established and emerging coronary risk factors in patients with heterozygous familial hypercholesterolaemia. Heart 2004;90:1431-7.
- [2] Austin MA, Hutter CM, Zimmern RL, Humphries SE. Familial hypercholesterolemia and coronary heart disease: a HuGE association review. Am J Epidemiol 2004;160: 421-9.
- [3] Scientific Steering Committee on behalf of the Simon Broome Register Group. Risk of fatal coronary heart disease in familial hypercholesterolaemia. BMJ 1991;303:893-6.
- [4] Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science 1986;232:34-47.
- [5] Soutar AK, Naoumova RP. Mechanisms of disease: genetic causes of familial hypercholesterolemia. Nat Clin Pract 2007;4:214-25.
- [6] Slack J. Risks of ischemic heart disease in familial hyperlipoproteinemic states. Lancet 1969;294:1380-2.
- [7] Macedo A, Sebastiao KI, Miname MH, Santos RD. Risk factors for coronary heart disease in Brazilian familial hypercholesterolemia subjects. Int J Atheroscler 2008;3: 87-92.
- [8] Sijbrands EJG, Westendorp RGJ, Lombardi MP, Havekes LM, Frants RR, Kastelein JJP, et al. Additional risk factors influence excess mortality in heterozygous familial hypercholesterolaemia. Atherosclerosis 2000;149:421-5.
- [9] Sijbrands EJG, Westendorp RGJ, Defesche JC, de Meier PHEM, Smelt AHM, Kastelein JJP. Mortality over two centuries in large pedigree with familial hypercholesterolaemia: family tree mortality study. BMJ 2001;322:1019-22.
- [10] Civeira F. International Panel on Management of Familial Hypercholesterolemia. Guidelines for the diagnosis and management of heterozygous familial hypercholesterolemia. Atherosclerosis 2004;173:55-68.
- [11] Jansen AC, Aalst-Cohen ES, Tanck MW, Trip MD, Lansberg PJ, Liem AH, et al. The contribution of classical risk factors to cardiovascular disease in familial hypercholesterolaemia: data in 2400 patients. J Intern Med 2004;256:482-90.
- [12] de Sauvage N, Defesche JC, Buirma RJ, Hutten BA, Lansberg PJ, Kastelein JJ. Prevalence and significance of cardiovascular risk factors in a large cohort of patients with familial hypercholesterolaemia. J Intern Med 2003;253:161-8.
- [13] Hopkins PN, Stephenson S, Wu LL, Riley WA, Xin Y, Hunt SC. Evaluation of coronary risk factors in patients with heterozygous familial hypercholesterolemia. Am J Cardiol 2001;87: 547-53.
- [14] Watts GF. Postprandial lipaemia in familial hypercholesterolaemia: clinical and metabolic significance. Atherosclerosis 2000;148:426-8.
- [15] Havel RJ. Chylomicron remnants: hepatic receptors and metabolism. Curr Opin Lipidol 1995;6:312-6.
- [16] Lamarche B, Rashid S, Lewis GF. HDL metabolism in hypertriglyceridemic states: an overview. Clin Chim Acta 1999;286:145-61.
- [17] Adiels M, Olofsson SO, Taskinen MR, Boren J. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler Thromb Vasc Biol 2008;28:1225-36.

- [18] Nordestgaard BG, Freiberg JJ. Clinical relevance of non-fasting and postprandial hypertriglyceridemia and remnant cholesterol. Curr Vasc Pharmacol 2011;9:281-6.
- [19] Chapman MJ, Ginsberg HN, Amarenco P, Andreotti F, Boren J, Catapano AL, et al. Triglyceride-rich lipoproteins and highdensity lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J 2011;32:1345-61.
- [20] Sarwar N, Sandhu MS, Ricketts SL, Butterworth AS, Di Angelantonio E, et al. Triglyceride-mediated pathways and coronary disease: collaborative analysis of 101 studies. Lancet 2010;375:1634-9.
- [21] Patsch JR, Miesenbock G, Hopferwieser T, Muhlberger V, Knapp E, Dunn JK, et al. Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arterioscler Thromb Vasc Biol 1992;12:1336-45.
- [22] Weintraub MS, Grosskopf I, Rassin T, Miller H, Charach G, Rotmensch HH, et al. Clearance of chylomicron remnants in normolipidaemic patients with coronary artery disease: case control study over three years. BMJ 1996;312:935-9.
- [23] Hodis HN, Mack WJ. Triglyceride-rich lipoproteins and the progression of coronary artery disease. Curr Opin Lipidol 1995;6:209-14.
- [24] Watts GF, Mandalia S, Brunt JNH, Slavin BM, Coltart DJ, Lewis B. Independent associations between plasma lipoprotein subfraction levels and the course of coronary artery disease in the St. Thomas' Atherosclerosis Regression Study (STARS). Metabolism 1993;42:1461-7.
- [25] Couillard C, Bergeron N, Prud'homme D, Bergeron J, Tremblay A, Bouchard C, et al. Postprandial triglyceride response in visceral obesity in men. Diabetes 1998;47:953-60.
- [26] de Man FH, Cabezas MC, van Barlingen HH, Erkelens DW, de Bruin TW. Triglyceride-rich lipoproteins in non-insulindependent diabetes mellitus: post-prandial metabolism and relation to premature atherosclerosis. Eur J Clin Invest 1996;26:89-108.
- [27] Kolovou GD, Anagnostopoulou KK, Pavlidis AN, Salpea KD, Iraklianou SA, Tsarpalis K, et al. Postprandial lipemia in men with metabolic syndrome, hypertensives and healthy subjects. Lipids Health Dis 2005;4:21.
- [28] Nordestgaard BG, Stender S, Kjeldsen K. Reduced atherogenesis in cholesterol-fed diabetic rabbits. Giant lipoproteins do not enter the arterial wall. Arterioscler Thromb Vasc Biol 1988:8:421-8
- [29] Rapp JH, Lespine A, Hamilton RL, Colyvas N, Chaumeton AH, Tweedie-Hardman J. Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque. Arterioscler Thromb Vasc Biol 1994;14:1767-74.
- [30] Proctor SD, Mamo JC. Retention of fluorescent-labelled chylomicron remnants within the intima of the arterial wall evidence that plaque cholesterol may be derived from postprandial lipoproteins. Eur J Clin Invest 1998;28:497-503.
- [31] Chan DC, Chen MM, Ooi EM, Watts GF. An ABC of apolipoprotein C-III: a clinically useful new cardiovascular risk factor? Int J Clin Pract 2008;62:799-809.
- [32] Pitas RE, Innerarity TL, Mahley RW. Foam cells in explants of atherosclerotic rabbit aortas have receptors for beta-very low density lipoproteins and modified low density lipoproteins. Arterioscler Thromb Vasc Biol 1983;3:2-12.
- [33] Zheng XY, Liu L. Remnant-like lipoprotein particles impair endothelial function: direct and indirect effects on nitric oxide synthase. J Lipid Res 2007;48:1673-80.
- [34] Alipour A, van Oostrom AJH, Izraeljan A, Verseyden C, Collins JM, Frayn KN, et al. Leukocyte activation by triglyceride-rich lipoproteins. Arterioscler Thromb Vasc Biol 2008;28:792-7.
- [35] Sambola A, Osende J, Hathcock J, Degen M, Nemerson Y, Fuster V, et al. Role of risk factors in the modulation of tissue

- factor activity and blood thrombogenicity. Circulation 2003;107:973-7.
- [36] Moyer MP, Tracy RP, Tracy PB, Veer CV, Sparks CE, Mann KG. Plasma lipoproteins support prothrombinase and other procoagulant enzymatic complexes. Arterioscler Thromb Vasc Biol 1998;18:458-65.
- [37] Alaupovic P, Mack WJ, Knight-Gibson C, Hodis HN. The role of triglyceride-rich lipoprotein families in the progression of atherosclerotic lesions as determined by sequential coronary angiography from a controlled clinical trial. Arterioscler Thromb Vasc Biol 1997;17:715-22.
- [38] Gronholdt MLM, Nordestgaard BG, Nielsen TG, Sillesen H. Echolucent carotid artery plaques are associated with elevated levels of fasting and postprandial triglyceride-rich lipoproteins. Stroke 1996;27:2166-72.
- [39] Souverein OW, Defesche JC, Zwinderman AH, Kastelein JJP, Tanck MWT. Influence of LDL-receptor mutation type on age at first cardiovascular event in patients with familial hypercholesterolaemia. Eur Heart J 2007;28:299-304.
- [40] Bertolini S, Pisciotta L, Di Scala L, Langheim S, Bellocchio A, Masturzo P, et al. Genetic polymorphisms affecting the phenotypic expression of familial hypercholesterolemia. Atherosclerosis 2004;174:57-65.
- [41] Umans-Eckenhausen MAW, Sijbrands EJG, Kastelein JJP, Defesche JC. Low-density lipoprotein receptor gene mutations and cardiovascular risk in a large genetic cascade screening population. Circulation 2002;106:3031-6.
- [42] Dedoussis GV, Skoumas J, Pitsavos C, Choumerianou DM, Genschel J, Schmidt H, et al. FH clinical phenotype in Greek patients with LDL-R defective vs. negative mutations. Eur J Clin Invest 2004;34:402-9.
- [43] Alonso R, Mata N, Castillo S, Fuentes F, Saenz P, Muniz O, et al. Cardiovascular disease in familial hypercholesterolaemia: influence of low-density lipoprotein receptor mutation type and classic risk factors. Atherosclerosis 2008;200:315-21.
- [44] Damgaard D, Larsen ML, Nissen PH, Jensen JM, Jensen HK, Soerensen VR, et al. The relationship of molecular genetic to clinical diagnosis of familial hypercholesterolemia in a Danish population. Atherosclerosis 2005;180:155-60.
- [45] Junyent M, Gilabert R, Jarauta E, Nunez I, Cofan M, Civeira F, et al. Impact of low-density lipoprotein receptor mutational class on carotid atherosclerosis in patients with familial hypercholesterolemia. Atherosclerosis 2010;208:437-41.
- [46] Civeira F, Castillo S, Alonso R, Meriño-Ibarra E, Cenarro A, Artied M, et al. Tendon xanthomas in familial hypercholesterolemia are associated with cardiovascular risk independently of the low-density lipoprotein receptor gene mutation. Arterioscler Thromb Vasc Biol 2005;25:1960-5.
- [47] Oosterveer DM, Versmissen J, Yazdanpanah M, Defesche JC, Kastelein JJP, Sijbrands EJG. The risk of tendon xanthomas in familial hypercholesterolaemia is influenced by variation in genes of the reverse cholesterol transport pathway and the low-density lipoprotein oxidation pathway. Eur Heart J 2010;31:1007-12.
- [48] Oosterveer DM, Versmissen J, Yazdanpanah M, Hamza TH, Sijbrands EJ. Differences in characteristics and risk of cardiovascular disease in familial hypercholesterolemia patients with and without tendon xanthomas: a systematic review and meta-analysis. Atherosclerosis 2009;207: 311-7
- [49] Kolovou GD, Anagnostopoulou KK, Pilatis ND, Iraklianou S, Hoursalas IS, Liberi S, et al. Heterozygote men with familial hypercholesterolaemia may have an abnormal triglyceride response post-prandially. Evidence for another predictor of vascular risk in familial hypercholesterolaemia. Int J Clin Pract 2005;59:311-7.
- [50] Su JW, Nzekwu MM, Cabezas MC, Redgrave T, Proctor SD. Methods to assess impaired post-prandial metabolism and

- the impact for early detection of cardiovascular disease risk. Eur J Clin Invest 2009;39:741-54.
- [51] Krasinski SD, Cohn JS, Russell RM, Schaefer EJ. Postprandial plasma vitamin A metabolism in humans: a reassessment of the use of plasma retinyl esters as markers for intestinally derived chylomicrons and their remnants. Metabolism 1990;39:357-65.
- [52] Smith D, Watts GF, Dane-Stewart C, Mamo JC. Post-prandial chylomicron response may be predicted by a single measurement of plasma apolipoprotein B48 in the fasting state. Eur J Clin Invest 1999;29:204-9.
- [53] Watts GF, Barrett PH, Marais AD, Dane-Stewart CA, Martins IJ, Dimmitt SB, et al. Chylomicron remnant metabolism in familial hypercholesterolaemia studied with a stable isotope breath test. Atherosclerosis 2001;157:519-23.
- [54] Choi SY, Fong LG, Kirven MJ, Cooper AD. Use of an anti-low density lipoprotein receptor antibody to quantify the role of the LDL receptor in the removal of chylomicron remnants in the mouse in vivo. J Clin Invest 1991;88:1173-81.
- [55] Ishibashi S, Perrey S, Chen Z, Osuga JI, Shimada M, Ohashi K, et al. Role of the low density lipoprotein (LDL) receptor pathway in the metabolism of chylomicron remnants. a quantitative study in knockout mice lacking the LDL receptor, apolipoprotein E, or both. J Biol Chem 1996;271:22422-7.
- [56] Martins IJ, Redgrave TG. A 13CO2 breath test to assess the metabolism of triglyceride-rich lipoprotein remnants in mice. J Lipid Res 1998;39:691-8.
- [57] Bowler A, Redgrave TG, Mamo JC. Chylomicron-remnant clearance in homozygote and heterozygote Watanabe-heritable-hyperlipidaemic rabbits is defective. Lack of evidence for an independent chylomicron-remnant receptor. Biochem J 1991;276(Pt 2):381-6.
- [58] Twisk J, Gillian-Daniel DL, Tebon A, Wang L, Barrett PH, Attie AD. The role of the LDL receptor in apolipoprotein B secretion. J Clin Invest 2000;105:521-32.
- [59] Rubinsztein DC, Cohen JC, Berger GM, van der W, Coetzee GA, Gevers W. Chylomicron remnant clearance from the plasma is normal in familial hypercholesterolemic homozygotes with defined receptor defects. J Clin Invest 1990;86:1306-12.
- [60] Mamo JC, Smith D, Yu KC, Kawaguchi A, Harada-Shiba M, Yamamura T, et al. Accumulation of chylomicron remnants in homozygous subjects with familial hypercholesterolaemia. Eur J Clin Invest 1998;28:379-84.
- [61] Cabezas MC, de Bruin TW, Westerveld HE, Meijer E, Erkelens DW. Delayed chylomicron remnant clearance in subjects with heterozygous familial hypercholesterolaemia. J Intern Med 1998;244:299-307.
- [62] Twickler T, Dallinga-Thie GM, de Valk HW, Schreuder PCNJ, Jansen H, Cabezas MC, et al. High dose of simvastatin normalizes postprandial remnant-like particle response in patients with heterozygous familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 2000;20:2422-7.
- [63] Tremblay AJ, Lamarche B, Ruel I, Hogue JC, Bergeron J, Gagne C, et al. Lack of evidence for reduced plasma apo B48 catabolism in patients with heterozygous familial hypercholesterolemia carrying the same null LDL receptor gene mutation. Atherosclerosis 2004;172:367-73.
- [64] Dane-Stewart CA, Watts GF, Mamo JC, Dimmitt SB, Barrett PH, Redgrave TG. Elevated apolipoprotein B-48 and remnant-like particle-cholesterol in heterozygous familial hypercholesterolaemia. Eur J Clin Invest 2001;31:113-7.
- [65] Sauvage Nolting PRW, Twickler MB, Dallinga-Thie GM, Buirma RJA, Hutten BA, Kastelein JJP, for the Examination of Probands and Relatives in Statin Studies with Familial Hypercholesterolemia (ExPRESS) Study Group. Elevated remnant-like particles in heterozygous familial hypercholesterolemia and response to statin therapy. Circulation 2002;106:788-92.

- [66] Mahley RW, Ji ZS. Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res 1999;40:1-16.
- [67] Schaefer JR, Rader DJ, Ikewaki K, Fairwell T, Zech LA, Kindt MR, et al. In vivo metabolism of apolipoprotein A-I in a patient with homozygous familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 1992;12:843-8.
- [68] Saku K, Yamamoto K, Sakai T, Yanagida T, Hidaka K, Sasaki J, et al. Kinetics of HDL-apoA-I in the WHHL rabbit, an animal model of familial hypercholesterolemia. Atherosclerosis 1989;79:25-30.
- [69] Mahley RW, Innerarity TL, Weisgraber KB, Oh SY. Altered metabolism (in vivo and in vitro) of plasma lipoproteins after selective chemical modification of lysine residues of the apolipoproteins. J Clin Invest 1979;64:743-50.
- [70] Cummings MH, Watts GF, Umpleby M, Hennessy TR, Quiney JR, Sonksen PH. Increased hepatic secretion of very-lowdensity-lipoprotein apolipoprotein B-100 in heterozygous familial hypercholesterolaemia: a stable isotope study. Atherosclerosis 1995;113:79-89.
- [71] Tremblay AJ, Lamarche B, Ruel IL, Hogue JC, Bergeron J, Gagne C, Couture P. Increased production of VLDL apoB-100 in subjects with familial hypercholesterolemia carrying the same null LDL receptor gene mutation. J Lipid Res 2004;45: 866-72.
- [72] Millar JS, Maugeais C, Ikewaki K, Kolansky DM, Barrett PH, Budreck EC, et al. Complete deficiency of the low-density lipoprotein receptor is associated with increased apolipoprotein B-100 production. Arterioscler Thromb Vasc Biol 2005;25:560-5.
- [73] Frenais R, Ouguerram K, Maugeais C, Marchini JS, Benlian P, Bard JM, et al. Apolipoprotein A-I kinetics in heterozygous familial hypercholesterolemia: a stable isotope study. J Lipid Res 1999;40:1506-11.
- [74] Schaefer JR, Winkler K, Schweer H, Hoffmann MM, Soufi M, Scharnagl H, et al. Increased production of HDL apoA-I in homozygous familial defective apoB-100. Arterioscler Thromb Vasc Biol 2000;20:1796-9.
- [75] Hobbs HH, Brown MS, Goldstein JL. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat 1992;1:445-66.
- [76] Heath KE, Gahan M, Whittall RA, Humphries SE. Low-density lipoprotein receptor gene (LDLR) world-wide website in familial hypercholesterolaemia: update, new features and mutation analysis. Atherosclerosis 2001;154:243-6.
- [77] Real JT, Chaves FJ, Ejarque I, Garcia-Garcia AB, Valldecabres C, Ascaso JF, et al. Influence of LDL receptor gene mutations and the R3500Q mutation of the apoB gene on lipoprotein phenotype of familial hypercholesterolemic patients from a South European population. Eur J Hum Genet 2003;11:959-65.
- [78] Esser V, Limbird LE, Brown MS, Goldstein JL, Russell DW. Mutational analysis of the ligand binding domain of the low density lipoprotein receptor. J Biol Chem 1988;263:13282-90.
- [79] Gudnason V, Day IN, Humphries SE. Effect on plasma lipid levels of different classes of mutations in the low-density lipoprotein receptor gene in patients with familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 1994;14: 1717-22.
- [80] Innerarity TL, Mahley RW, Weisgraber KH, Bersot TP, Krauss RM, Vega GL, et al. Familial defective apolipoprotein B-100: a

- mutation of apolipoprotein B that causes hypercholesterolemia. J Lipid Res 1990;31:1337-49.
- [81] Zulewski H, Ninnis R, Miserez AR, Baumstark MW, Keller U. VLDL and IDL apolipoprotein B-100 kinetics in familial hypercholesterolemia due to impaired LDL receptor function or to defective apolipoprotein B-100. J Lipid Res 1998;39:380-7.
- [82] Horton JD, Cohen JC, Hobbs HH. Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem Sci 2007;32:71-7.
- [83] Humphries SE, Neely RD, Whittall RA, Troutt JS, Konrad RJ, Scartezini M, et al. Healthy individuals carrying the PCSK9 p.R46L variant and familial hypercholesterolemia patients carrying PCSK9 p.D374Y exhibit lower plasma concentrations of PCSK9. Clin Chem 2009;55:2153-61.
- [84] Le May C, Kourimate S, Langhi C, Chetiveaux M, Jarry A, Comera C, et al. Proprotein convertase subtilisin kexin type 9 null mice are protected from postprandial triglyceridemia. Arterioscler Thromb Vasc Biol 2009;29:684-90.
- [85] Naoumova RP, Tosi I, Patel D, Neuwirth C, Horswell SD, Marais AD, et al. Severe hypercholesterolemia in four British families with the D374Y mutation in the PCSK9 gene: longterm follow-up and treatment response. Arterioscler Thromb Vasc Biol 2005;25:2654-60.
- [86] Soutar AK, Naoumova RP. Autosomal recessive hypercholesterolemia. Semin Vasc Med 2004;4:241-8.
- [87] Garcia CK, Wilund K, Arca M, Zuliani G, Fellin R, Maioli M, et al. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science 2001;292:1394-8.
- [88] Naoumova RP, Neuwirth C, Lee P, Miller JP, Taylor KG, Soutar AK. Autosomal recessive hypercholesterolaemia: long-term follow up and response to treatment. Atherosclerosis 2004;174:165-72.
- [89] Wittekoek ME, Pimstone SN, Reymer PWA, Feuth L, Botma GJ, Defesche JC, et al. A common mutation in the lipoprotein lipase gene (N291S) alters the lipoprotein phenotype and risk for cardiovascular disease in patients with familial hypercholesterolemia. Circulation 1998;97:729-35.
- [90] Hopkins PN, Wu LL, Schumacher MC, Emi M, Hegele RM, Hunt SC. Type III dyslipoproteinemia in patients heterozygous for familial hypercholesterolemia and apolipoprotein E2. Evidence for a gene-gene interaction. Arterioscler Thromb Vasc Biol 1991;11:1137-46.
- [91] Carmena R, Roy M, Roederer G, Minnich A, Davignon J. Coexisting dysbetalipoproteinemia and familial hypercholesterolemia. Clinical and laboratory observations. Atherosclerosis 2000;148:113-24.
- [92] Johansen CT, Kathiresan S, Hegele RA. Genetic determinants of plasma triglycerides. J Lipid Res 2011;52:189-206.
- [93] Duez H, Lamarche B, Uffelman KD, Valero R, Cohn JS, Lewis GF. Hyperinsulinemia is associated with increased production rate of intestinal apolipoprotein B-48-containing lipoproteins in humans. Arterioscler Thromb Vasc Biol 2006;26:1357-63.
- [94] Watts GF, Mamo JC, Redgrave TG. Postprandial dyslipidaemia in a nutshell: food for thought. Aust N Z J Med 1998;28:816-23.
- [95] Stein EA, Lane M, Laskarzewski P. Comparison of statins in hypertriglyceridemia. Am J Cardiol 1998;81:66-9.
- [96] Miller M, Stone NJ, Ballantyne C, Bittner V, Criqui MH, Ginsberg HN, et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 2011;123:2292-333.